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Power in a Randomized Experiment

d
√

n ≈ 4

❑ d: standardized effect size

❑ n: # units in each arm

❑ Can approximately handle most issues by fiddling with n; e.g.

■ Clustering: replace n with ESS = n

DEFF

■ Covariates: replace n with ESS = n

1−R2

■ Imbalance: replace n with ESS = 4np(1 − p)
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Why is Power in RD Worse?

❑ S = “forcing variable”

❑ T = treatment = 1{S < 0} (WLOG)

❑ Power degraded due to collinearity between S and T

■ e.g. if S is uniform and T is split at the midpoint, R2
ST

= 0.75

❑ Variance inflation is 1

1−R2

ST

= 4

❑ → sample size required for power equivalent to
randomized experiment is 4 times larger

❑ Equivalently, minimum detectable effect for equivalent
sample size is 2 times larger
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Why is Assessing RD Power More Challenging?

Primarily because power is affected by:

❑ Shape of distribution of S and where cutoff c determining T is
in that distribution

■ Schochet (2008) provides clear description

❑ Estimators for E(Y |c−) and E(Y |c+) might be complex and may
involve data-dependent data restrictions

■ E.g. Cross-validation choice of bandwidth (Ludwig and
Miller, 2005; Imbens and Lemieux, 2008) or simultaneous
choice of bandwidth and model complexity (Kirby,
McCombs, and Mariano, 2009)

❑ Other complications like fuzziness and clustering exacerbate
these issues
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Simulation as an Alternative Approach

❑ Often know a lot about data during design of RD studies

■ “Happenstance RD”: May have actual values of S and T and
past values of Y (e.g. NCLB, RTTT)

■ “Designed RD”: Will know how you intend to construct S

and T and again probably have good proxies for Y

❑ Rather than trying to map knowledge about the data into power
formulas, use knowledge about the data to simulate outcomes
and analysis procedure
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Sketch of Approach

❑ β: True treatment effect

❑ D(β): Simulated data, depends on β

❑ β̂(D): Estimated treatment effect, depends on D

■ “Black Box” - make it as complicated as analysis will be

❑ Step 1: Estimate distribution of β̂(D) given β = 0

■ Use this to determine rejection region R

❑ Step 2: Estimate Pr{β̂(D) ∈ R} for selected sequence of
alternatives β

■ “Outer” loop: sequence of β

■ “Inner” loop: M Monte Carlo iterations and count how often
estimated effect is in rejection region
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Example Output
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Advantages of Simulation Approach

❑ Anything can be inserted in the analysis no matter how hard it
would be to examine analytically; e.g.

■ Cluster corrections with imbalanced samples, including the
use of random effects models to aid efficiency

■ Complex model selection criteria, such as bandwidth and
functional form choice via cross-validation

❑ No need to agonize over what is meant by an “effect size” in
RD - outcomes of simulation study get reported on the natural
scale of the outcome measure

❑ Simulation approach naturally provides power curves rather
than MDE at a single value of power (e.g. 0.80) which is more
informative

June 30, 2010- 8



Conclusions

❑ RD is unlike a randomized experiment because careful
statistical model selection and specification is inherent to
obtaining valid impact estimates

■ i.e. in RD there is generally not a simple, analytically
tractable procedure that will provide a compelling estimate.

❑ As standard practice for RD becomes more sophisticated (e.g.
by WWC standards setting a high bar), simple formulas are
less likely to provide authentic assessments of power

❑ Simulation is a defensible and relatively easy alternative

■ And can benefit from the fact that very specific data is often
available during the design phase
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